Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity.

نویسندگان

  • C J Westmark
  • R Ghose
  • P W Huber
چکیده

Ribosomes prepared from somatic tissue of Xenopus laevis inhibit transcription by RNA polymerase III. This observation parallels an earlier report that a high speed fraction from activated egg extract, which is enrichedin ribosomes, inhibits RNA polymerase III activityand destabilizes putative transcription complexes assembled on oocyte 5S rRNA genes. Transcription of somatic- and oocyte-type 5S rRNA genes and a tRNA gene are all repressed in the present experiments. We find that 5S rRNA genes incubated in S150 extract prepared from immature oocytes exhibit an extensive DNase I protection pattern that is nearly identical to that of the ternary complex of TFIIIA and TFIIIC bound to a somatic 5S rRNA gene. The complexes formed in this extract are stable at concentrations of ribosomes that completely repress transcription, indicating that formation of the TFIII(A+C) complex is not the target of inhibition. Ribosomes taken through a high salt treatment no longer repress transcription of class III genes, establishing that the inhibition is due to an associated factor and not the particle itself. The inhibitory activity released from ribosomes is inactivated by treatment with proteinase K, but not micrococcal nuclease. Preincubation of ribosomes with a general protein kinase inhibitor, 6-dimethylaminopurine, eliminates repression of transcription. Western blot analysis demonstrates that p34(cdc2), which is known to mediate repression of transcription by RNA polymerase III, is present in these preparations of ribosomes and can be released from the particles upon extraction with high salt. These results establish that a kinase activity, possibly p34(cdc2), is the actual agent responsible for the observed inhibition of transcription by ribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitotic repression of transcription in vitro

A normal consequence of mitosis in eukaryotes is the repression of transcription. Using Xenopus egg extracts shifted to a mitotic state by the addition of purified cyclin, we have for the first time been able to reproduce a mitotic repression of transcription in vitro. Active RNA polymerase III transcription is observed in interphase extracts, but strongly repressed in extracts converted to mit...

متن کامل

Cooperation between small nuclear RNA-activating protein complex (SNAPC) and TATA-box-binding protein antagonizes protein kinase CK2 inhibition of DNA binding by SNAPC.

Protein kinase CK2 regulates RNA polymerase III transcription of human U6 small nuclear RNA (snRNA) genes both negatively and positively depending upon whether the general transcription machinery or RNA polymerase III is preferentially phosphorylated. Human U1 snRNA genes share similar promoter architectures as that of U6 genes but are transcribed by RNA polymerase II. Herein, we report that CK...

متن کامل

The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III.

Human U6 small nuclear RNA gene transcription by RNA polymerase III requires the general transcription factor SNAP(C), which binds to human small nuclear RNA core promoter elements and nucleates pre-initiation complex assembly with the Brf2-TFIIIB complex. Multiple components in this pathway are phosphorylated by the protein kinase CK2, including the Bdp1 subunit of the Brf2-TFIIIB complex, and...

متن کامل

Pomegranate peel extract inhibits internalization and replication of the influenza virus: An in vitro study

Objective: Influenza virus, which is associated with high level of morbidity and mortality, has been recently considered a public health concern; however, the methods of choice to control and treat it are limited. Our previous study showed anti-influenza virus activity of pomegranate peel extract (PPE). In this study, the mechanism through which PPE acts against influenza virus...

متن کامل

Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.

Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 20  شماره 

صفحات  -

تاریخ انتشار 1998